فناوري نانو چيست

۱۳۸۸/۰۳/۰۳


فناوري نانو چيست؟

فناوري‌نانو واژه‌اي است كلي كه به تمام فناوري‌هاي پيشرفته در عرصه كار با مقياس نانو اطلاق مي‌شود. معمولاً منظور از مقياس نانوابعادي در حدود 1nm تا 100nm مي‌باشد. (1 نانومتر يک ميليارديم متر است).

اولين جرقه فناوري نانو (البته در آن زمان هنوز به اين نام شناخته نشده بود) در سال 1959 زده شد. در اين سال ريچارد فاينمن طي يك سخنراني با عنوان «فضاي زيادي در سطوح پايين وجود دارد» ايده فناوري نانو را مطرح ساخت. وي اين نظريه را ارائه داد كه در آينده‌اي نزديك مي‌توانيم مولكول‌ها و اتم‌ها را به صورت مسقيم دستكاري كنيم.

واژه فناوري نانو اولين بار توسط نوريوتاينگوچي استاد دانشگاه علوم توكيو در سال 1974 بر زبانها جاري شد. او اين واژه را براي توصيف ساخت مواد (وسايل) دقيقي كه تلورانس ابعادي آنها در حد نانومتر مي‌باشد، به كار برد. در سال 1986 اين واژه توسط كي اريك دركسلر در کتابي تحت عنوان : «موتور آفرينش: آغاز دوران فناوري‌نانو»بازآفريني و تعريف مجدد شد. وي اين واژه را به شكل عميق‌تري در رساله دكتراي خود مورد بررسي قرار داده و بعدها آنرا در کتابي تحت عنوان «نانوسيستم‌ها ماشين‌هاي مولكولي چگونگي ساخت و محاسبات آنها» توسعه داد.


تعاریف نانو

يك نانومتر يك هزارم ميكرون است و اگر بخواهيم احساس فيزيكي نسبت به آن داشته باشيم مي‌توان گفت كه يك نانومتر 80000/1قطر موي انسان مي‌باشد اما اين تعريف مقياس نانو، نمي تواند مقايسه درستي باشد چرا که ضخامت موي انسان با توجه خصوصيات فردي هرانسان از چند ده ميكرومتر تا چند صدميكرومتر متغير مي‌باشد. بنابراين نياز به يك استاندارد براي بيان مفهوم مقياس نانو وجود دارد. با ايجاد ارتباط ميان اندازه اتم‌ها و مقياس نانو مي‌توان يك نانومتر را راحت‌ترتصوركرد. يك نانومتر برابر قطر 10 اتم هيدروژن و يا 5 اتم سيلسيم مي‌باشد. درك اين موضوع براي افراد معمولي نيز راحت‌تر مي‌باشد. علي‌رغم اينكه درك اندازه يك اتم براي افراد غيرعلمي ساده نمي‌باشد، با اينحال اندازه دقيق اتم براي فهماندن اين مقياس زياد اهميت ندارد. چيزي كه با اين تشابه مشخص مي‌شود، اين است كه نانوفناوري عبارت است از:دستكاري كوچكترين اجزاء ماده يا اتم‌ها


تعاریف نانو از منابع مختلف


Merriam-Webster's Collegiate Dictionary definition:nano•tech•nol•o•gyPronunciation: "na-nO-tek-'nä-l&-jEFunction: nounDate: 1987: the art of manipulating materials on an atomic or molecular scale especially to build microscopic devices (as robots).

فناوري نانو عبارت است از هنر دستكاري مواد در مقياس اتمي يا مولكولي و به خصوص ساخت قطعات و لوازم ميكروسكوپي (مانند روبات‌هاي ميكروسكپي)


Engines of Creation Glossary:Nanotechnology - technology based on the manipulation of individual atoms and molecules to build structures to complex, atomic specifications.

فناري نانو فناوري است كه بر پايه دستكاري تك‌تك اتم‌ها و مولكول‌ها استوار است بدين منظور كه بتوان ساختاري پيچيده را با خصوصيات اتمي توليد كرد.


The About.com definition at the physics portal: Nanotechnology Definition: The development and use of devices that have a size of only a few nanometres. Research has been carried out into very small components, which depend on electronic effects and may involve movement of a countable number of electrons in their action. Such devices would act faster than larger components. Considerable interest has been shown in the production of structures on a molecular level by suitable sequences of chemical reactions. It is also possible to manipulate individual atoms on surfaces using a variant of the atomic force microscope.

تعريف فناوري نانو: توسعه و استفاده از ادوات و قطعاتي كه اندازه آنها تنها چند نانومتر است. تحقيق بر روي قطعات و ادوات بسيار كوچك كه خواصشان به خواص الكترونيكي اين قطعات وابسته است و خواص الكتريكي آنها احتمالاً متأثر از حركت تعداد معدودي الكترون در طي عملكرد قطعه مي‌باشد. اين ادوات، سريع‌تر از ادوات بزرگتر عمل مي‌كنند. مسأله قابل توجه اين است كه مي‌توان چنين ساختارهاي در ابعاد مولكولي را به كمك انتخاب مناسب مراحل واكنش‌هاي شيميايي توليد كرد. همچنين مي‌توان چنين ساختارهايي را از طريق دستكاري اتم‌ها روي سطح به وسيله ميكروسكوپ‌هاي نيروي اتمي بدست آورد.


Webopedia's definition of nanotechnology A field of science whose goal is to control individual atoms and molecules to create computer chips and other devices that are thousands of times smaller than current technologies permit. Current manufacturing processes use lithography to imprint circuits on semiconductor materials. While lithography has improved dramatically over the last two decades -- to the point where some manufacturing plants can produce circuits smaller than one micron (1,000 nanometers) -- it still deals with aggregates of millions of atoms. It is widely believed that lithography is quickly approaching its physical limits. To continue reducing the size of semiconductors, new technologies that juggle individual atoms will be necessary. This is the realm of nanotechnology.Although research in this field dates back to Richard P. Feynman's classic talk in 1959, the term nanotechnology was first coined by K. Eric Drexler in 1986 in the book Engines of Creation.In the popular press, the term nanotechnology is sometimes used to refer to any sub-micron process, including lithography. Because of this, many scientists are beginning to use the term molecular nanotechnology when talking about true nanotechnology at the molecular level.

شاخه‌اي از علوم كه هدف نهايي آن كنترل بر روي تك‌تك اتم‌ها و مولكول‌ها مي‌باشد تا بتوان به كمك آن تراشه‌هاي كامپيوتري و ساير ادواتي توليد كرد كه هزاران بار كوچكتر از ادوات فعلي باشند كه فناوري امروز امكان ساخت آنها را براي ما فراهم آورده است. در فناوري فعلي توليد مدارات نيمه هادي از روش ليتوگرافي براي ايجاد طرح مدار بر روي مواد نيمه هادي استفاده مي‌شود. پيشرفت شگرفي كه در ليتوگرافي طي 2 دهه اخير رخ داده است به ما اين امكان را مي‌دهد كه با بهره‌گيري از دستگاه‌هاي جديد بتوانيم مداراتي كوچكتر از 1 ميكرون (1000 نانومتر) را توليد كنيم. البته بايد توجه داشت كه اين مدارات هنوز از ميليون‌ها اتم تشكيل شده‌اند. بيشتر دانشمندان بر اين باور هستند كه ليتوگرافي به مرزهاي محدودكننده فيزيكي خود نزديك شده است. بنابر اين براي كوچكتر كردن اندازه نيمه‌هادي‌ها مي‌بايست از فناوري‌هاي جديدي كه مي‌توانند تك‌تك اتم‌ها را سازماندهي كنند، استفاده كرد و طبعاً چنين فناوري جزء محدوده فناوري نانو محسوب مي‌شود. اگر چه تحقيق در زمينه فناوري نانو به زماني باز مي‌گردد كه ريچاردپي فاينمن طي سخنراني كلاسيك خود در سال 1959 به اين فناوري اشاره كرد اما عبارت فناوري نانو اولين بار توسط كي‌اريك دركسلر در سال 1986 در كتابي از وي با عنوان موتورهاي آفرينش بسط داده شد. در مقالات و نوشته هاي عمومي واژه فناوري نانو گاهي به هر فرآيند كوچكتر از اندازه‌هاي ميكرون اطلاق مي‌گردد كه مي‌تواند فرآيند ليتوگرافي را نيز شامل شود. به خاطر همين بسياري از دانشمندان هنگامي كه مي‌خواهند درباره فناوري نانو به معني واقعي و علمي كلمه صحبت كنند از آن به عنوان فناوري نانومولكولي ياد مي‌كنند كه به معني فناوري نانو در ابعاد مولكولي مي‌باشد.

Whatisit.com definition: Nanotechnology, or, as it is sometimes called, molecular manufacturing, is a branch of engineering that deals with the design and manufacture of extremely small electronic circuits and mechanical devices built at the molecular level of matter. The Institute of Nanotechnology in the U.K. expresses it as "science and technology where dimensions and tolerances in the range of 0.1 nanometer (nm) to 100 nm play a critical role." Nanotechnology is often discussed together with micro-electromechanical systems (MEMS), a subject that usually includes nanotechnology but may also include technologies higher than the molecular level. (click the link for entire definition)

فناوري نانو كه گاه به آن فناوري ساخت مولكولي نيز گفته مي‌شود، شاخه‌اي از مهندسي است كه با طراحي و ساخت مدارات الكترونيكي و اداوات مكانيكي بسيار كوچك (در ابعاد مولكولي) سر و كار دارد. پژوهشگاه فناوري نانو انگلستان تعريف فناوري نانو را بدين گونه بيان مي‌كند: قلمروي از علم و فناوري كه به ابعاد و تلورانس‌هاي 1/0 تا 100 نانو مترمي‌پردازد در جايي كه اين ابعاد و يا تلورانس‌ها بتوانند نقش مهمي در خواص قطعه ايفاء كنند.بحث فناوري نانو اغلب مشابه بحث سيستم‌هاي ميكرو مكانيكي- الكترونيكي مي‌باشد(MEMS) .در واقع فناوري نانو زير مجموعه MEMS است و MEMS به فناوري‌هاي بزرگتر از ابعاد مولكولي (ابعاد نانو) نيز مي‌پردازد.


NNI definition National Nanotechnology Initiative (nano.gov)What is Nanotechnology?While many definitions for nanotechnology exist, the NNI calls it "nanotechnology" only if it involves all of the following:1. Research and technology development at the atomic, molecular or macromolecular levels, in the length scale of approximately 1 - 100 nanometer range.2. Creating and using structures, devices and systems that have novel properties and functions because of their small and/or intermediate size.3. Ability to control or manipulate on the atomic scale.

نانوتکنولوژي چيست ؟در حالي که تعاريف زيادي براي فناوري نانو وجود دارد ، ‌‌NNI تعريفي را براي فناوري نانو ارائه مي دهد که در برگيرنده هر سه تعريف ذيل باشد.1- توسعه فناوري و تحقيقات در سطوح اتمي ، مولکولي و يا ماکرومولکولي در مقياس اندازه اي 1 تا 100 نانومتر.2 – خلق و استفاده از ساختارها و ابزار و سيستمهايي که به خاطر اندازه کوچک يا حد ميانه آنها، خواص و عملکرد نويني دارند .3 – توانايي کنترل يا دستکاري در سطوح اتمي .


عناصر اصلی در نانوفناوری

تفاوت اصلي فناوري نانو با فناوري‌هاي ديگر در مقياس مواد و ساختارهايي است كه در اين فناوري مورد استفاده قرار مي‌گيرند. البته تنها كوچك بودن اندازه مد نظر نيست؛ بلكه زماني كه اندازه مواد دراين مقياس قرار مي‌گيرد، خصوصيات ذاتي آنها از جمله رنگ، استحكام، مقاومت خوردگي و ... تغيير مي‌يابد. در حقيقت اگر بخواهيم تفاوت اين فناوري را با فناوري‌هاي ديگر به صورت قابل ارزيابي بيان نماييم، مي‌توانيم وجود "عناصر پايه" را به عنوان يك معيار ذكر كنيم. عناصر پايه در حقيقت همان عناصر نانومقياسي هستند كه خواص آنها در حالت نانومقياس با خواص‌شان در مقياس بزرگتر فرق مي‌كند.
اولين و مهمترين عنصر پايه، نانوذره است. منظور از نانوذره، همانگونه که از نام آن مشخص است، ذراتي با ابعاد نانومتري در هر سه بعد مي‌باشد. نانوذرات مي‌توانند از مواد مختلفي تشکيل شوند، مانند نانوذرات فلزي، سراميکي، ... .

دومين عنصر پايه، نانوكپسول است. همان طوري كه از اسم آن مشخص است، كپسول‌هاي هستند كه قطر نانومتري دارند و مي‌توان مواد مورد نظر را درون آنها قرار داد و كپسوله كرد. سال‌هاست كه نانوكپسول‌ها در طبيعت توليد مي‌شوند؛ مولكول‌هاي موسوم به فسفوليپيدها كه يك سر آنها آبگريز و سر ديگر آنها آبدوست است، وقتي در محيط آبي قرار مي‌گيرند، خود به خود كپسول‌هايي را تشكيل مي‌دهند كه قسمت‌هاي آبگريز مولكول در درون آنها واقع مي‌شود و از تماس با آب محافظت مي‌شود. حالت برعكس نيز قابل تصور است.
عنصر پايه بعدي نانولوله کربني است. اين عنصر پايه در سال 1991 در شركت NEC كشف شدند و در حقيقت لوله‌هايي از گرافيت مي‌باشند. اگر صفحات گرافيت را پيچيده و به شكل لوله در بياوريم، به نانولوله‌هاي كربني مي‌رسيم. اين نانولوله‌ها داراي اشكال و اندازه‌هاي مختلفي هستند و مي‌توانند تك ديواره يا چند ديواره باشند. اين لوله‌ها خواص بسيار جالبي دارند که منجر به ايجاد کاربردهاي جالب توجهي از آنها مي‌شود.


روش های ساخت عناصر پایه
به طور کلي عناصر پايه با دو رويکرد «بالا به پايين» و «پايين به بالا» قابل ساخت مي‌باشند. در رويکرد بالا به پايين براي توليد محصول، يک ماده توده‌اي را شکل‌دهي و اصلاح مي‌کنند. در حقيقت در اين روش، يک ماده بزرگ را برمي‌داريم و با کاهش ابعاد و شکل‌دهي آن، به يک محصول با ابعاد نانو مي‌رسيم. به عبارت ديگر، اگر اندازه يک ماده توده‌اي را به طور متناوب کاهش دهيم تا به يک ماده با ابعاد نانومتري برسيم، از رويکرد بالا به پايين استفاده کرده‌ايم. اين كار اغلب و نه هميشه شامل حذف بعضي از مواد به شکل ضايعات است، مثل ماشين‌کاري يک بخش فلزي از يک موتور يا نانوساختاري‌کردن فلزات به طريق تغييرشکل‌دهي (که شامل ضايعات نيست). تصوير زير نشان‌دهنده اين رويکرد مي‌باشد.

رويکرد پايين به بالا درست عکس رويکرد بالا به پايين مي‌باشد.در اين رويکرد، محصول از طريق کنار هم قراردادن مواد ساده‌تر به وجود مي‌آيد، مانند ساخت يک موتور از قطعات آن. در حقيقت کاري که در اينجا انجام مي‌شود، کنار هم قرار دادن اتم‌ها و مولکول‌ها (که ابعاد کوچکتر از مقياس نانو دارند) براي ساخت يک محصول نانومتري است. تصور کنيد که قادريم اتم‌ها و مولکول‌ها را به طور واقعي ببينيم و آنها را به طور دلخواه کنار هم قرار دهيم تا شکل مورد نظر حاصل شود. معمولاً روش‌هاي پايين به بالا ضايعاتي ندارند؛ هر چند الزاماً اين مسأله صادق نيست. تصوير زير رويکرد پايين به بالا را نشان مي‌دهد.


کاربردهای نانوفناوری

در حقيقت کاربرد فناوري نانو از کاربرد عناصر پايه نشأت مي‌گيرد. هر کدام از اين عناصر پايه، ويژگي‌هاي خاصي دارند که استفاده از آنها در زمينه‌هاي مختلف، موجب ايجاد خواص جالبي مي‌گردد. مثلاً از جمله کاربردهاي نانوذرات مي‌توان به دارورساني هدفمند و ساده، بانداژهاي بي‌نياز از تجديد، شناسايي زود هنگام و بي‌ضرر سلول‌هاي سرطاني، و تجزيه آلاينده‌هاي محيط زيست اشاره کرد. همچنين نانولوله‌هاي کربني داراي کاربردهاي متنوعي مي‌باشند که موارد زير را مي‌توان ذکر کرد:

• تصوير برداري زيستي دقيق

• حسگرهاي شيميايي و زيستي قابل اطمينان و داراي عمر طولاني

• شناسايي و جداسازي كاملاً اختصاصي DNA

• ژن‌درماني كه از طريق انتقال ژن به درون سلول توسط نانولوله‌ها صورت مي‌پذيرد.

• از بين بردن باكتري‌هااينها تنها مواردي از کاربردهاي بسيار زيادي هستند که براي عناصر پايه قابل تصور مي‌باشند.

کاربرد اين عناصر پايه در صنايع مختلف، در درخت ديگري به نام «درخت صنعت» آورده شده است که با مراجعه به گروه مطالعاتي آينده‌انديشي، بخش درخت صنعت، مي‌توانيد آن را مشاهده کنيد.در نهايت «درخت فناوري نانو» معرفي مي‌گردد که فناوري نانو را به شکل يک زنجيره از رويکرد ساخت عناصر پايه تا کاربرد آنها، در يک درخت چهار سطحي نمايش مي‌دهد. با مراجعه به گروه مطالعاتي آينده‌انديشي، بخش درخت فناوري، مي‌توانيد آن را مشاهده کنيد.


» ادامه مطلب

چسب های ترموپلاستیک

۱۳۸۸/۰۲/۳۱


چسب های ترموپلاستیک
ترموپلاستیک ها که با استفاده از آنها صدها چسب فرموله شده است. پلیمر هایی با وزن مولکولی متوسط بالا و ساختمان مولکولی خطی و یا شاخه ای می باشند.
در فرمول هر چسب یک ترموپلاستیک با تعدادی از مواد شیمیایی وجود دارد که هرکدام نقشی را دارا هستند.
از بین چسب های ترموپلاستیکی در اینجا تنها چسب های پلی (ونییل استات) ، پلی(ونییل استال) و پلی اکریلیت ها پلی (میتل متا کریلات) و پلی (سیانواکریلیت) و مشتقات سلولز معرفی می شوند.
1-پلی (ونییل استات)
پلی ((ونییل استات) دارای ساختمان مولکولی شاخه ای با توزیع اوزان مولکولی گسترده می باشد. اختلاف خواص فیزیکی در میان گونه های مختلف (پلی ونییل استات) ناشی از تفاوت در وزن مولکولی و توزیع اوزان مولکولی می باشد.
گونه هایی که وزن مولکولی کم دارند در درجه حرارت اتاق نرم و انعطاف پذیرند در حالی که گونه های دارای وزن مولکولی بالا سخت و چغر مه اند.
تمام گونه های پلی (ونییل استات) نسبت به سطوح منفذدار و صاف اجسام مختلف تمایل به چسبندگی دارند.
یکی از دلایل تمایل به چسبندگی وجود گروه های قطبی استات در مولکول های پلمیر می باشد.
چسب های پلی (ونییل استات) بر دو نوعند: چسب های حاوی حلال و چسب های امولسیونی که نوع اخیر بیشترین مصرف را دارد.
چسب های امولسیونی بصورت مایع سفید رنگ خامه ای شکل بوده و ویسکوزیته بین 500 تا 5000 سانتی پواز را دارا هستند . و مقدار ماده جامد در آنها از 50درصد بیشتر است. برای حصول چسبندگی و خیس کنندگی خوب ، اندازه متوسط ذرات پلیمر در امولسیون بایستی 1 تا 3 میکرون باشد.نقش توزیع اندزاه ذرات برچسبندگی هنوز مشخص نشده است.
چسب های پلی (ونییل استات) غالباً همراه با مواد شیمیایی دیگر می باشد که هر کدام به منظور تامین خاصیت معینی اضافه می شوند این مواد عبارتند از :
مواد افزاینده ویسکوزیته
بیشتر به چسب های امولسیونی اضافه می شوند . این مواد از رزین های طبیعی و مصنوعی محلول در آب هستند .
پلی (وینیل الکل که اختلاط پذیری کامل یا امولسیون دارد ، نشاسته و دکسترین از جمله این موادند.
* حلال ها - افزایش وسیکوزیته به کمک حلال هم درچسب های امولسیونی امکان پذیر است ، حلال اضافه شونده می تواند نقش نرم کنندگی هم داشته باشد وحلال های کلره آلیفاتیک و ترموئن بیشترین مصرف را دارند.
* نرم کننده ها – انعطاف پذیری و مقاومت در برابر آب توسط نرم کننده تامین می شود. نمونه این نرم کننده ها دی بوتیل فتالیت و یا بنزیل بوتیل فتالیت است.
* پرکننده ها – بیشتر به منظور پائین آوردن قیمت چسب مورد استفاده قرار می گیرند . کربنات کلیسم سیلکات کلسیم ومیکا از جمله این موادند.
* سایر مواد افزودنی – اجسام فعال سطحی جهت کنترل خصلت جریان یابی.
مواد ضد کف و ضد باکتری هم به فرمول چسب اضافه می شوند.
برای تهیه یک چسب هر یک از مواد به مقدار لازم به پلیمر امولسیونی اضافه شده و در یک درجه حرارت مناسب به خوبی مخلوط می گردند.
چسب های پلی (وینیل استات) بصورت گسترده ای مورد مصرف قرار می گیرند . نمونه هائی از موراد استفاده آنها عبارت است از چسب چوب ، پاکت های کاغذی ، مقوا ، پاکت های شیر و نوشیدنی ها ، جعبه های تاشونده ، برچسب لوازم اتاق اتومبیل ، چرم ، شیشه ، کاغذ آلومنیوم و غیره .
2-پلی (وینیل استال)
پلی (وینیل استال) به گروهی از پلیمر ها گفته می شود که محصول واکنش پلی (وینیل الکل) با یک آلدئید است.
مهمترین پلی (وینیل استال) هائی که بعنوان چسب بکار می روند از فرمالدئید و بوتیر الدئید تهیه شده و به ترتیب به پلی (وینیل نرمال ) پلی (وینیل بوتیرال) موسومند – خواص این پلیمرها به وزن مولکولی و درجه هیدرولیز گروه استات بستگی دارد.
پلی (وینیل بوتیرال) در مقایسه با پلی (وینیل نرمال) قابلیت انحلال و انعطاف پذیری بیشتری داشته و توان پوسته ای شدن بیشتری را موجب می شود.
چسب هائی که بر مبنای این پلیمرها تهیه می شوند یا بصورت مایع شفاف و بی رنگ در یک حلال و یا بصورت ذرات پراکنده در آب هستند . چسبندگی انها به شیشه بسیار عالی است و تولید کنندگان شیشه های ایمنی وسائط نقلیه به مقدار خیلی زیاد از این چسب ها استفاده می کنند . برای چنین کاربردی ؛ شفافیت ، پایداری در برابر نور خورشید، مقاومت ضربه ای و خصلت جهندگی به منظور نگهداری خرده های شیشه در صورت شکسته شدن لازم است که پلی استال ها دارای این خواص هستند – آنها همچنین بعنوان روکش سطوح صاف شیشه ای و فلزات با تشکیل یک فیلم دارای ضخامت کم مورد مصرف قرار می گیرند.
افزودن یک از پلی استال ها به فرمول چسب ها باعث اصلاح خواص و بهبود چسبندگی آنها می شود . برای مثال: آلیاژ یک رزین فنلی با یک پلی استال مبنای چسب ساختاری مهمی برای فلزات میباشد. زیرا چسب های فنلی برای مصرف به منظور چسب ساختاری ، انعطاف پذیری و چسبندگی لازم را ندارند در حالی که آلیاژ فوق می تواند به میزان کافی این خواص را داشته باشد.
3-پلی اکریلیت ها –
اکریلیت ها ترموپلاستیک هائی هستند که از پلیمر شدن زنجیری استرها یا آمیدهای اکریکیت اسید حاصل می شوند.


آنها به صورت مایع شفاف با گرانروی کم (محلول پلیمر در مونومر) تهیه می شوند.
این مایعات قابلیت ادامه پلیمر یزاسیون و رشد مولکولی را دارند. مایع آکریلیت با مواد افزودنی لازم و بخصوص یک عامل پخت (مثل پرکلرواتیلن و یا تری کلرواتیلن ) فرموله شده که با استعمال آن ، سطوح اجسام از طریق عمل پخت به یکدیگر چسبانده می شود.
عمل پخت و یا کامل شدن تشکیل اتصال از طریق اعمال حرارت( با بکارگیری یک درجه حرارت ثابت) در یک کوره و یا پرس گرم انجا م می شود.
قبل از اینکه حلال از چسب خارج شود حرات باعث ایجاد ژلاسیون می شود – چسب های آکریلیت به علت استحکام پائین به عنوان چسب ساختاری بکار نمی روند از آنها در چسباندن صفحات پلاستیکی ، ورقه های فلزی ( در تهیه قطعات لازم اتومبیل ، کشتی و هواپیما)، ورقه های اکریلیک ، شیشه ، چوب ، چرم و پارچه به یکدیگر استفاده می کنند چسب پلی (متیل متاکریلیت) نمونه ای از اکریلیت هاست ، این چسب در برابر قلیا ها ، اسیدها نمک ها ، مواد سوختی ، اب و شرایط اتمسفری مقاومت دارد . در برابر باکتری ها و قارچ ها نیز فاسد نمی شود.
خواص الکتریکی خیلی خوبی داشته و بنابراین در صنایع الکتریکی جهت اتصال قطعات و عایق کاری بکار می رود.
خواص فیزیکی آن تا حد مطلوب توسط نرم کننده ها و یا موادی که قابلیت اختلاط پذیری با آنها را دارد.
درجه حرارت کاربرد مجاز برای این چسب از تا می باشد . این چسب در برابر الکل ها حلال ها ی قوی و هیدروکربورها ( آرو ماتیک و کلره) آسیب پذیر می باشد.
- سیانو آکریلیت
آلکیل سیانو اکریلیت به مقدار زیاد تولید و بعنوان چسب قطره ای فرموله و مصرف می شود . این ترکیب میل شدیدی به واکنش پلیمریزاسیون آنیونی دارد . برای جلوگیری از واکنش مقدار بسیار کمی از اسدیهای آلی به آن اضافه می گردد تا محیط کمی اسیدی باشد . مقدار بسیار کمی از یک باز دارنده رادیکال آزاد هم ، برای جلوگیری از پلیمر یزاسیون رادیکالی به ان اضافه می شود. برای تنظیم گرانروی این چسب و بالا بردن آن می توان انواع پلیمرهای خالص نظیر پلی (متیل متاکریلیت) و یا ABS را در چسب حل نمود.
قدرت مقاومت در برابر ضربه برای دو جسم به هم چسبیده شده را می توان با اضافه نمودن ترکیباتی نظیر فسفات های تری آلکیل به فرمول چسب زیاد نمود.
مقاومت پیوند بین اجسام به هم چسبیده شده در مقابل حرارت را می توان با افزودن ترکیباتی نظیر ایندریدمالئیک یا آسکیل فتالات به فرمول چسب افزایش داد و همچنین مقاومت پیوند بین دو جسم در مقابل رطوبت و اب را می توان با اضافه نمودن مقداری کربنات کلیسم یا کربنات با ریم به فرمول چسب افزایش داد چسب فرموله شده قطره ای را در درجه حرارت اتاق می توان تا حدود یک سال و در درجه حرارت های پائین تر به مدت بیشتر نگهداری نمود.
علت چسبیدن دو جسم به همدگیر توسط این ترکیب پلیمر یزه شدن لایه نازکی از آن بین سطوح جسم ، در حضور کاتالیزور بازی( باز ضعیفی مثل ذرات آب در محیط ، الکل و یا قلیائیت خود جسم ) می باشد.



پلی (الکیل سیانواکریلیت)
باز ضعیف ، ابتدا محیط اسیدی چسب را خنثی نموده و سپس بعنوان کاتالیزور واکنش پلیمریزاسیون آنیونی عمل می نماید. خصوصیات بارز چسب های سیانواکریلیت عبارتنداز:
الف- مایع بیرنگ بصورت خالص و کاملاً روان هستند.
ب- جهت چسباندن دو جسم ، حرارت لازم نیست و این چسب ها بدون حلال هستند.
ج- برای خشک شدن ضمن عمل چسباندن نیاز به کاتالیزور ندارند.
د- چوب ، فلزات ، شیشه ، پلاستیک را بر ، سرامیک چینی و تقریباً کلیه مواد را خیلی سریع و محکم به همدیگر می چسبانند.
ه – مقدار بسیار کمی از چسب برای چسباندن دو جسم لازم است. ( برای مثال ، یک قطره برای یک را پنج مربع از سطح جسم)
و- سرعت چسباندن از 3 ثانیه تا حدود 3 دقیقه بر حسب نوع جسم متغیر است.
ز- اتصال چسبی بین دو جسم در برابر مواد شیمیایی مثل الکل ها ، بنزین ، روغن و اکثر حلال ها مقاوم است.
ح- پیوند چسبی دو جسم در برابر حرارت از - تا مقاوم است . (می توان مقاومت حرارتی آن را با اضافه نمودن یک ماده مناسب افزایش داد).
ط- قابلیت ذخیره سازی و نگهداری آن نسبتاً زیاد و در حدود یک سال است .
ی – بوی تند و اشک آور داشته ، غیر سمی است بطور نسبی ارزان است.
این چسب ها دارای معایبی نیز می باشند. از جمله اینکه تنها اجسامی را بخوبی به هم می چسابند که دارای سطوح صیقلی و صاف باشند . تمایل شدید به چسبندگی سریع به پوست شخص و همچنین مقاومت کم در مقابل رطوبت زیاد و درجه حرارت های بالاتر از دارند.
برای اشنائی با مقدار مصرف چسب های سیانو آکریلبت در سطح جهان می توان به امار سال 1978 توجه نمود.در این سال حدود 275000 پوند چسب برای چسباندن حدود هشت بیلیون قطعه به همدیگر به مصرف رسیده است ، میزان مصرف این چسب سال به سال افزایش یافته است.
» ادامه مطلب

چسب های رابری


چسب های رابری
به جز رابر طبیعی ، رابرهای مصنوعی مانند بوتیل، پلی بوتادین ، sbr، پلی ایزو پرن ، نیتریل نئو پرن و پلی سولفید بعنوان چسب بکار میروند.
در اینجا در مورد چسبهای نیتریل نئوپرن و پلی سولفید که اهمیت بیشتری دارند مطالبی ذکر میکنیم.
چسب های مصنوعی دو نوع هستند:
الف) چسب های حاوی حلال را در یک حلال یا مخلوطی از حلال های آلی حل میشود بطوریکه مقدار جامد در این چسبها بین ده تا هفتاد درصد تغییر می نماید.
ب) چسب های نوع امولسیونی – که با افزودن مواد شیمیایی لازم بر حسب طرح فرمول (مانند رزین تقویت کننده ، نرم کننده ) به لاتکس رابر بدست می آیند چسبهای امولسیونی مسئله اشتعال پذیری و سمیت نوع حلال را نداشته و ارزانتر هستند اما درجه چسبندگی و سرعت تشکیل پیوند و خشک شدن آنها کمتر است. چسب های اخیر فقط برای چسباندن اجسام متخلخل مثل چوب بکار میروند.
نیتریل رابر
نیتریل رابرهای تجارتی ، کوپلیمر بوتادین واکر یلو نیتریل هستند ( ساختمان شیمیایی زیر) که بر حسب درصد اکریلو نیتریل در کوپلیمر یک نوع از رابر خام با مشخصات مولکولی معین محسوب میشوند.

چسبهای نیتریل رابرکه هر یک مخلوطی از رابر خام به همراه تعدادی از مواد شیمیایی منتخب است به صورت یکی از حالت های فیزیکی سیمانی لاتکس بطانه و نوار تهیه شده و مورد استفاده قرار می گیرد.
این چسبها برای اتصال نیتریل رابر خام و لکانیزه شده به همدیگر به به ترمو پلاستیک ها به نئو پرن و سایر الاستومرها که نیاز به مقاومت در برابر روغن ها یا حلال ها را دارند بکار میروند.
در صورتیکه فرمول چسب نیتریل رابر طوری طرح شده باشد که پس از بکارگیری نیاز به ولکانیزاسیون نیتریل رابر باشد (مثلاً بصورت سیمانی) فرمول شامل تمام یا قسمتی از مواد شیمیائی زیر می باشد:
گوگرد ، تسریع کننده (همواره نسبت معینی از گوگرد به تسریع کننده ) اکسید روی ،پر کننده ( دوده ، اکسید آهنی ، دی اکسید تیتانیم ، خاک رس ... ) نرم کننده ( دی اکتیل فتالیت ، رزین طبیعی ، نیتریل رابر مایع و ...) ضد اکسایش ( بخصوص نوع حرارتی ).
خواص چسب ناشی از اثر خواص هر یک از اجزا در فرمول بوده و هر یک از مواد نقشی را دارا است و به منظور خاصی اضافه شده است.
بعنوان مثال ؛ دوده و یا هر یک از پر کننده های دیگر معمولاً در بالا بردن استحکام و پائین آوردن هزینه نقش دارند. ضد اکسایش جهت بالا بردن مقاومت حرارتی یا نوری و نرم کننده برای بهبود خاصیت چسبندگی و سهولت فرایند مخلوط سازی و بکارگیری چسب بکار میرود.
از چسب های نیتریل رابر به تنهائی به عنوان چسب ساختاری استفاده نمی شود اما در صورتی که با رزین های دیگر ( مانند رزین فنلی ، pvc ، اپکسی ، رابرهای کلر ، آلکید ) مخلوط و لکانیزه شود چسب هایی با استحکام بالا بوجود می آید.
این چسب ها در اتصال اجسام مختلف (فلز ، چوب ، سرامیک ، چرم و شیشه) به همدیگر بکار رفته و اغلب آنها در درجه حرارت های بالا خواص مفید خود را حفظ می نمایند.
نئوپرن
از پلیمر شدن کلورپرن بدست می آید.
خواص چسب های نئوپرن نه تنها به خوبی چسب های را بر طبیعی است بلکه در برابر مواد روغنی و اوزن مقاوم ترند
چسب های نئوپرن به یکی از سه روش زیر تهیه و بکار برده می شوند.
الف- آلیاژ نئوپرن با رزین های دیگر (مثل رزین فنلی) و سایر مواد شیمیایی لازم فرموله شده و به صورت سمنت(خیرخام) تهیه و بعنوان چسب ساختاری بکار می روند.
ب- سمنت نئوپرن را می توان در حلال هائی مثل تولوئن به صورت پراکنده و معلق درآورد و بکار برد
ج- نئوپرن را می توان در مخلوطی از هیدروکربورهای آروماتیک و آلیفاتیک حل کرد و به مصرف رساند چسب های نئوپرن به دو نوع پخت شده و خام (پخت نشده) تقسیم می شوند.
چسب های پخت شده در مواردی که درجه حرارت اجسام اتصال یافته هنگام استفاده بالاست. بکار می روند.
اما در مواقعی که اجسام چسبانده شده به هم در درجه حرارت اتاق (یا درجه حرارت کم ) مورد استفاده قرار می گیرند. بعلت نیروهای جاذبه داخل مولکولی خوب نئوپرن ، نیازی به پخت را بر نمی باشد.
پخت نئوپرن در درجه حرارت اتاق با استفاده از تسریع کننده های خیلی فعال و یا در درجه حرارت های بالاتر به کمک مواد تسریع کننده با فعالیت کم امکان پذیر می باشد.
در فرمول چسب ها ی نئوپرن (بصورت سمنت) مواد شیمیایی زیر می تواند وجود داشته باشد.
اکسید منیزیم ، اکسید روی (به منظور پخت و جذب اسید ایجاد شده براثر تخریب ) ، ضد اکسایش (به مقدار دو درصد برای بالا بردن پایداری حرارتی ) ، پرکننده (مثل دوده ، خاک رس به منظور کاهش هزینه ) تقویت کننده (مثل سیلکیات کلسیم هیدراته) و حلال (مانند تولوئن) هر یک از این مواد با درصد معینی به نئوپرن اضافه شده و نقش مشخصی را داراست. مخلوط رزین ها (مثل رزین فنلی) با نئوپرن موجب بهبود چسبندگی و خواص مکانیکی چسب می گردد.
موارد مصرف عمده چسب های نئوپرن در صنایع تولید کفش، اتومبیل ، کشتی و هوانوردی است که برای اتصال اجسام مختلف به همدیگر ( را بر ، پلاستیک ، فلز و...) بکار می روند.
پلی سولفیدها
پلی سولفید یک الاستومر مصنوعی است که از واکنش پلی سولفید سدیم با دی کلرور های آلی (مثل دی کلرواتان)بدست می آید.


چسب های پلی سولفید معمولاًٌ به صورت مایع دو قسمتی بکار می روند . مایع الاستومر با عامل پخت پراکنده شده در یک حلال یا یک نرم کننده همراه با یک پرکننده ترکیب می شود.
عامل پخت که معمولاً یک پراکسید (مثل پراکسید سرب) است با الاستومر واکنش داده و تشکیل اتصالات عرضی می دهد و در نتیجه محصول جامد شده و چسبندگی خوبی نسبت به مواد مختلف پیدا می کند . پخت می تواند.
در درجه حرارت اتاق انجام شود و ماکزیمم استحکام در مدت 3 الی 7 روز حاصل می شود.
مقاومت این چسب ها در برابر آب ، حلال های آلی ، روغن ها ونمک ها از چسب های ترموپلاستیکی بهتر می باشد.
خواص آنها در درجه حرارت های پایین عالی است بطوری که در درجه حرارت هم انعطاف پذیری آنها حفظ می شود . مقاومت آنها در برابر درجه حرارت های بالاتر ضعیف است. بطوری که ماده در نرم می شود.
پلی سولفید ها به تنهائی بیشتر برای آب بندی و بطانه کاری مورد استفاده قرار می گیرند و اغلب پس از مخلوط نمودن یکی از رزین ها (مثل رزین اپکسی) به آن عنوان چسب بکار می روند . هدف از افزایش این رزین ها به فرمول چسب ازدیاد خواص مکانیکی (استحکام) چسب های پلی سولفید می باشد. زیرا چسب های پلی سولفیدعموماً از استحکام ضعیفی برخوردارند.
چسب های حاصل از آلیاژ پلی سولفید ها در اتصال اجسامی از قبیل فلز، رابر، پلاستیک ، چوب ، شیشه و سنگ به یکدیگر بکار می رود و در عایق بندی وسائل الکترونیک هم مصرف می شود.
» ادامه مطلب

اکسترودر

۱۳۸۸/۰۲/۱۹


اکسترودر
معرفی:
اکسترودر ماشینی است که به آمیزه لاستیکی و پلاستیکی تجزیه شده نیرو واردساخته تا با فشار در انتهای دستگاه از میان یک قالب عبور نموده و محصولی نواری شکل با سطح مقطع خاص تولید نماید.
ماشینهای اکسترودر با کاربردهای متنوع بطور گسترده در صنعت لاستیک و پلاستیک مورد استفاده قرار میگیرند.در خط تولید، ماشینهای اکسترودر برای شکل دهی اولیه لاستیک و پلاستیک جهت عملیات بعدی و نیز برای شکل دادن به محصولات نهائی مورد استفاده قرار میگیرند.
کلیه این کاربردها باعث می شوند که نیازهای عملی هر کاربرد خاص در ماشین طراحی شود و طیف گسترده طرحهای موجود ماشینهای اکسترودر نیز منعکس کننده همین مطلب است.
* محصولات اکسترودری:
1- انواع شلنگها
2- ترد تایر(آج تایر)
3- سایدوال تایر( قسمت کناری رویه ی تایر
4- درزگیرها
5- پروفیلها و نوارها
6- سیمها و کابلها
7- و کلا" تمام محصولاتی که به صورت پیوسته می باشند.
تقسیم بندی اکسترودر ها از نظر تغذیه:
اکسترودر هایی که از روی دمای مواد مورد تغذیه آنها که برای انجام عملیات ضروری میباشد تفکیک می شوند دو دسته اند:
- اکسترودر تغذیه گرم
- اکسترودر تغذیه سرد
معمولا" تغذیه مورد نیاز برای اکسترودر های گرم که در صنعت لاستیک به کار گرفته شده اند قبلا" طی عملیاتی جداگانه پیش گرم می شوند. در روشهای معمول اکستروژن گرم معمولا از یک میل برای این کار استفاده میشود.اکسترودر های سرد که با استفاده ازیک نوار لاستیکی یا لاستیکهای دانه ای در دمای محیط کار میکند.ثانیا" اکسترودرها را میتوان با توجه به کاربردشان طبقه بندی و تفکیک کرد.
بسیاری از کارخانجات ماشینی میخواهند که اگر به اندازه کافی مؤثر نیست حداقل بتواند با موفقیت و بطور صحیح انواع آمیزه ها را با اختلاط متفاوت فرآیند نماید.در اینجا روی به حداقل رساندن زمان تعویض دای و برگرداندن ماشین به وضعیت عملیاتی مناسب و سهولت پاکسازی لازم و کافی برای به حداقل رساندن آلودگی ها ناشی از تغییر کامپاند تأکید می شود. وقتی قرارباشد دستگاهی برای یک مدت طولانی با ترکیبات لاستیکی که دارای خواص روانی و سیلانی محدودی هستند کار کند،مارپیچ سره ودای میتوانند طوری طراحی شوند تا هم میزان خروجی مواد بالا باشد و هم کنترل خوبی از لحاظ ابعاد وجود داشته باشد.همچنین علیرغم تغییرات جزئی در مواد تغذیه می توان قسمت تغذیه و تسمه کشش و نیز سیستم کنترل را طوری انتخاب کرد که کنترل ابعادی مناسب حاصل گردد.
تفاوت عمده فیزیکی میان اکسترودرهای سرد وگرم در نسبت طول به قطر مارپیچشان میباشد. برای ماشینهای گرم که قسمت قابل ملاحظه ای انرژی جهت گرم کردن و پلاستیکی کردن مخلوط لاستیک روی میل انجام شده عمل مارپیچ اکسترودر صرفا" انتقال و اعمال فشار میباشد.
این باعث میشود که ماشینها کوچک بوده و دارای طولهای مارپیچی بر حسب قطر آنها از 3d تا 5d باشند.
علاوه بر عملیات انتقال و فشار بوسیله مارپیچ ، در اکسترودرهای سرد میبایستی مارپیچ بتواند در لاستیک کارهای مکانیکی لازم جهت بالا بردن دما و رسیدن به درجه حرارت مورد نظر را انجام دهد و نرمی مواد هنگام خروج
از دای را بوجود آورد.این امر باعث میشود که مارپیچها دارای طولهایی بیشتر در محدوده 9d تا 15d باشندو حتی در بعضی کاربردها ممکن است از مارپیچهایی بزرگتر از این هم استفاده شود.
اکسترودر های سرد در حد وسیعی جای انواع گرم را در خطوط تولید گرفته اند. این جایگزینی بیشتر در خطوطی صورت گرفته که با کار دراز مدت و یا دقت در اندازه گیری ابعادی صحیح مورد نظر بوده است این ماشین با پیشرفتهای قابل ملاحظه ای که ناشی از تنوع طرح های توسعه یافته و اطلاع از فنون کار بوده در بدست گرفتن بازار ماشین آلات سهم بسزایی داشتند.
توضیح اجمالی در مورد اجزای اکسترودر مارپیچی با تغذیه سرد :
- قیف تغذیه : محلی است که آمیزه(مواد) وارد اکسترودر میشود. بسته به نوع تغذیه شکل قیف فرق میکند.
دو چیز درمورد قیف تغذیه مهم است:
1- اندازه قیف
2- یکنواختی تغذیه
** تغذیه یکنواخت باعث تولید محصول یکنواخت میشود.
-پوسته یا بدنه اکسترودر:
یک استوانه فلزی است که مارپیچ را احاطه میکند.در داخل این استوانه حفره هایی تعبیه میشود تا با عبور آب سرد وگرم بتوانیم درجه حرارت اکسترودر را کنترل کنیم. اگر درجه حرارت آمیزه کنترل نشود آمیزه داغ میشود که باعث میشود محصول خروجی به صورت برشته یا سوخته دار خارج شود (یا در اصل اسکورچ شود).
-مارپیچ:
در یک اکسترودر با تغذیه سرد همچنان که از نامش بر می آید،آمیزه لاستیکی در درجه حرارت محیط تغذیه میشود.خوراک ممکن است بصورت نوار یا دانه باشد مارپیچ باید به مقدار کافی انرژی مکانیکی انتقال دهد تا هم آمیزه نرم شده و هم با فشار عقب برنده دای مقابله نماید.
در طراحی مارپیچهای بکار برده شده در اکسترودر با تغذیه سرد ،بررسی های خاص لازم است.برای آنکه خرد شدن(Mastication) به مقدار لازم صورت گیرد باید ارتفاع پره مارپیچ کم و طول مارپیچ زیاد باشد.
مارپیچ یک اکسترودر ساده دارای سه قسمت تغذیه ،قسمت انتقالی یا سنجش و قسمت فشرده شدن میباشد. هر قسمت مارپیچ نقش جداگانه ای دارد .قسمت تغذیه،مواد را از قیف تغذیه انتقال میدهد.قسمت انتقالی مواد را حرارت داده،مخلوط مینماید.
قسمت فشرده سازی یکنواخت کننده است و فشار لازم برای راندن مواد از درون دای در آن ایجاد میگردد.
درون مارپیچ هم کنترل درجه حرارت وجود دارد.داخل مارپیچ مجراهایی تعبیه شده که از داخل آن آب میتواند عبور کند تا کنترل درجه حرارت داشته باشیم. سرعت مارپیچ در دمای اکسترودر تأثیر زیادی دارد در مقدار تغذیه ثابت افزایش سرعت مارپیچ باعث افزایش دمای محصول خروجی از اکسترودر میشود.
* سرعت ایده آل در اکسترودرهای مارپیچی:
حد سرعتی است که بتواند لاستیک را از تغذیه دریافت و از جمع شدن آن در قیف تغذیه جلوگیری کند.
-هد(کلگی):
هدف از بکار گیری هد متعادل ساختن و یکنواخت نمودن فشار و انتقال آمیزه به سمت قالب است.
شکل هد باید طوری طراحی شود تا بتواند نیازهایی را که لازم است تأمین کند:
1- تأمین حداکثر محصول خروجی بدون هیچ مشکل وبی نظمی
2- جبران تغییر شکل ناشی از خواص بازگشت الاستیک آمیزه
3- حذف نواحی ساکن و ایستا که احتمالا" در مسیر آمیزه ایجاد میشود.
-قالب(دای):
قالب جسمی است که بر روی کلگی(هد) قرار می گیرد و باعث می شود آمیزه هنگام خروج شکل مورد نظرما را به خود بگیرد.به طور کلی طراحی دای نیاز به مهارت وتجربه فراوان است.
» ادامه مطلب

طراحی تولید و قالبگیری پلیمریهای مرحله ای

۱۳۸۸/۰۲/۱۳

معرفی کتاب

طراحی تولید و قالبگیری پلیمریهای مرحله ای
Step-Growth Polymerization Process Modeling and Product Design

Kevin Seavey, Y. A. Liu "Step-Growth Polymerization Process Modeling and Product Design"
Wiley-Interscience 2008-08-11 ISBN: 0470238232 712 pages PDF 12,2 MB
Understand quantitative model step-growth polymerization plans and how to predict properties of the product polymer with the essential information in Step-Growth Polymerization Process Modeling and Product Design. If you want to learn how to simulate step-growth polymerization processes using commercial software and seek an in-depth, quantitative understanding of how to develop, use, and deploy these simulations, consult this must-have guide. The book focuses on quantitative relationships between key process input variables (KPIVs) and key process output variables (KPOVs), and the integrated modeling of an entire polymer manufacturing train.
To start download click HERE:
» ادامه مطلب

هندبوک روش های تست پلیمر

معرفی کتاب

هندبوک روش های تست پلیمر
Handbook of Polymer Testing

Handbook of Polymer Testing by R.P. Brown
Publisher: Smithers Rapra Technology ISBN 185957324X 2002-06-01 PDF 224 Pages 1.33 Mb
Knowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. Each class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact and tear and in this book it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.The topics covered in this book, include:1 Introduction: this explains, Reasons for Testing, Source and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing.2 Test Piece Preparation: Mixing, Moulding, Stamping from Sheet or Film, and Machining.3 Conditioning: Storage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning.4 Mass, Density and Dimensions: Measurement of Mass, of Density, and of Dimensions.5 Hardness: Relationships, Standard Methods, and Other Methods.6 Tensile Stress-Strain: General, and Test Methods.7 Compression Stress-Strain: Test Apparatus, Standard, and Other Tests.8 Shear Properties: Standard, and Other Tests.9 Flexural Stress-Strain: General, and Test Methods.10 Impact Strength: General, and Specific Tests.11 Tear Properties: Test Piece Geometry, Standard, and Other Tests12 Fracture Toughness: Standard, and Other Methods.
password: ebooks4science
» ادامه مطلب